Search results for "Elliptic equations"
showing 10 items of 26 documents
Classification and non-existence results for weak solutions to quasilinear elliptic equations with Neumann or Robin boundary conditions
2021
Abstract We classify positive solutions to a class of quasilinear equations with Neumann or Robin boundary conditions in convex domains. Our main tool is an integral formula involving the trace of some relevant quantities for the problem. Under a suitable condition on the nonlinearity, a relevant consequence of our results is that we can extend to weak solutions a celebrated result obtained for stable solutions by Casten and Holland and by Matano.
Existence of viscosity solutions to two-phase problems for fully nonlinear equations with distributed sources
2018
In this paper we construct a viscosity solution of a two-phase free boundary problem for a class of fully nonlinear equation with distributed sources, via an adaptation of the Perron method. Our results extend those in [Caffarelli, 1988], [Wang, 2003] for the homogeneous case, and of [De Silva, Ferrari, Salsa, 2015] for divergence form operators with right hand side.
Asymptotic behaviors of solutions to quasilinear elliptic equations with Hardy potential
2016
Optimal estimates on asymptotic behaviors of weak solutions both at the origin and at the infinity are obtained to the following quasilinear elliptic equations
Asymptotic behaviors of solutions to quasilinear elliptic equations with Hardy potential
2016
Optimal estimates on asymptotic behaviors of weak solutions both at the origin and at the infinity are obtained to the following quasilinear elliptic equations −Δpu − μ |x| p |u| p−2 u + m|u| p−2 u = f(u), x ∈ RN , where 1 0 and f is a continuous function. peerReviewed
A Parametric Dirichlet Problem for Systems of Quasilinear Elliptic Equations With Gradient Dependence
2016
The aim of this article is to study the Dirichlet boundary value problem for systems of equations involving the (pi, qi) -Laplacian operators and parameters μi≥0 (i = 1,2) in the principal part. Another main point is that the nonlinearities in the reaction terms are allowed to depend on both the solution and its gradient. We prove results ensuring existence, uniqueness, and asymptotic behavior with respect to the parameters.
Convex functions on Carnot Groups
2007
We consider the definition and regularity properties of convex functions in Carnot groups. We show that various notions of convexity in the subelliptic setting that have appeared in the literature are equivalent. Our point of view is based on thinking of convex functions as subsolutions of homogeneous elliptic equations.
Elliptic problems with convection terms in Orlicz spaces
2021
Abstract The existence of a solution to a Dirichlet problem, for a class of nonlinear elliptic equations, with a convection term, is established. The main novelties of the paper stand on general growth conditions on the gradient variable, and on minimal assumptions on Ω. The approach is based on the method of sub and supersolutions. The solution is a zero of an auxiliary pseudomonotone operator build via truncation techniques. We present also some examples in which we highlight the generality of our growth conditions.
The effects of convolution and gradient dependence on a parametric Dirichlet problem
2020
Our objective is to study a new type of Dirichlet boundary value problem consisting of a system of equations with parameters, where the reaction terms depend on both the solution and its gradient (i.e., they are convection terms) and incorporate the effects of convolutions. We present results on existence, uniqueness and dependence of solutions with respect to the parameters involving convolutions.
Symmetrization for singular semilinear elliptic equations
2012
In this paper, we prove some comparison results for the solution to a Dirichlet problem associated with a singular elliptic equation and we study how the summability of such a solution varies depending on the summability of the datum f. © 2012 Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag.
On the solutions to 1-Laplacian equation with L1 data
2009
AbstractIn the present paper we study the behaviour, as p goes to 1, of the renormalized solutions to the problems(0.1){−div(|∇up|p−2∇up)=finΩ,up=0on∂Ω, where p>1, Ω is a bounded open set of RN (N⩾2) with Lipschitz boundary and f belongs to L1(Ω). We prove that these renormalized solutions pointwise converge, up to “subsequences,” to a function u. With a suitable definition of solution we also prove that u is a solution to a “limit problem.” Moreover we analyze the situation occurring when more regular data f are considered.